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Abstract. We investigate the half-fillad Hubbard model in one and two dimensions using
approximations to the energy expressed as functionals of the momentum distribution. The
functionals are calculated using the Hartree—Fock approximation and density functional theory
in the local-spin-density and self-interaction-corrected {5I1¢) local-spin-density approximations
{LsDA} by expressing the ground-state spin densitics as a variational ansarz in which the
momentum distribution enters as a variational quantity, We calculate the momentum distribution,
energy and local moment, as well as our ansatz orbitals, in all three approximations and find
that the 51C always improves upon the LSDA.

1. Introduction

The theoretical study of high-temperature superconductivity has been an area of intense
investigation for the past few years now, since the discovery of the ceramic superconductors
in late 1986 [1], with research being camried out on both real materials and model
Hamiltonians. While many different approaches are taken towards the latter, the former
problem may be best studied using density functional theory (DFT) [2-4].

DFT provides a formally exact approach; the energy for an interacting system of
electrons, say, whether in an external field or not, is expressible as a functional of the
electronic density and is minimized at the ground-state density, with the Kohn-Sham
scheme [3] providing a method of determining the ground-state energy and density.
However, the exact functional is unknown and so it has to be approximated. This may
be achieved by splitting up the energy into three functionals of the spin densities, . (z):
Tiny, n.], the kinetic energy for a non-interacting set of electrons, Ulny, n,], the Hartree
electrostatic energy and Exc{n,n,], the exchange and correlation (XC) energy. A fourth
term arises if external fields are considered. but since none wiil be present, we shall ignore
it. In this manner T and U/ are relatively straightforward to calculate, while Exc is unknown

-and maust be approximated. One approach is the local-spin-density approximation (LSDA),
which is quantitatively successful in many cases, but fails where strong electron correlation
effects, leading to localized states, are present. The high-T. materials provide suitable
examples, where LSDA calculations fail to give antiferromagnetic insulating ground states,
e.g. for La,CuQy [5-9] and YBa;Cu;O5 [9].

In order to deal with these failures of the LSDA and to improve upon it, the use of a
self-interaction-corrected (SIC) LSDA was proposed [101. In the Kohn—Sham scheme [4] the
electrons occupy fictitious single-particle states, with wavefunctions ¢;,(z) { denoting all
the quantum numbers of the state, other than the spin, o), related to the true ground-state
spin densities, n,(x), by
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where the sum is over the occupied orbitals with spin o. However, in the LSDA each state
has a spurious electrostatic self-interaction, which increases as they localize. The SIC-LSDA
is then defined to be the LSDA with the self-interaction for each individual occupied state
subtracted, i.e.

Qcc
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where n;, (x) is the density due to ¢;, () and the braces indicate that the functional takes as
arguments the densities of all the occupied states. The SIC introduces an orbital-dependent
potential and the eigenstates of the effective Hamiltonian are therefore not automatically
orthogonal, so the expectation value of this Hamiltonian is not invariant under a unitary
change of states. The Hamiitonian can now exhibit a broken symmetry between exiended
and localized states, which is lacking in the LSDA, but the implementation of the SIC-LSDA
is more complicated. However, Svane and Gunnarsson have described a method {11] that
they claim is only slightly more difficult to irnplement than the LSDA and have applied it to
the transition metal oxides, obtaining the correct nature of the ground states. Furthermore,
Svane {12] has recently studied La;CuQO4 using this scheme and again the SIC-LSDa leads
to the correct ground state, with a moment on the Cu in good agreement with experiment.

The more difficult nature of the SIC-LSDA led first Svane and Gunnarsson [13, 14] then
Ishii and Terakura [15] and later Miyazaki, Ishii and Terakura [16] 1o use the Hubbard model
as a test of their algorithms; the first two papers dealt with the one- and two-dimensional
models, whiie the last two only considered the one-dimensional model, but both employed a
discrete DFT (DDFT) [17] extended to the SIC-LSDA. Svane and Gunnarsson [14] and Miyazaki
et al [16] have also investigated the two-dimensional dp model using DDFT, while Majewski
and Vogl [18,19] have similarly examined the one and two-dimensional Hubbard—Peierls
models. In this paper we retumn to the Hubbard model, employing an ad hoc, but much
simpler method. by which we are able to express the energy, in the Hartree~-Fock (HF), LSD
and SIC-L.SD approximations, as a functional of the momentum distribution. In section 2
we describe our method and in section 3 we present onr results, which expand upon those
previously published.

2. Method

Our method is to construct a set of localized states, in which the momentum distribution,
n(k), enters as a variational quantity, from which the spin densities may be calculated,
assuming a Néel ordered antiferromagnetic spin arrangement. The expectation values of the
site occupation operators are then given by functionals of the momentum distribution and
hence the energy, which we shall evaluate in the HF, LSD and SIC-LSD approximations. is
given as a functional of the momentum distribution too.

Since it will prove to be convenient, we write the Hubbard model, taken to be on a
d-dimensional square lattice (with lattice constant ¢ = 1 and 4 equal to 1 or 2), as

=133 W, ) +U T A, () @
} n
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where WJ (n) is the creation operator (CO) for an electron in the Wannier state centred on
the lattice site at . = (1. ..., ns) With spin @, S0 fiy(n) = Wi )W, (n) and {, } indicates
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that the sum is 0 be taken over all ordered pairs of nearest neighbours. The n sums are
assumed to be over a d-square region of the lattice containing N sites (where N is even;
see the appendix), with periodic boundary conditions applied. which shall be called the
fundamental domain (FD).

Letting EI (k) be the CO for the Bloch state with wavenumber k and spin o, we define

our localized ansaiz state centred on the lattice site » with spin ¢ to have CO EI (n) giveq
by

e (N s , '-
CJ(N):Z&::(*—N—) e k Bj(k) : (5)
dov =Y uwe —mwiey ©)

n'

where #(k) is the momentum diswribution of cither spin (i.e. n(k) = n,(k)), assumed to be
an even function of k,

win) = ;Vl—zizn(k)]m gk - 7
4 .

‘and the k-sums are over the first Brillouin zone (1BZ).
Since we are at half-Glling we may write

1 ik-n - - ‘
ntk) =+ 3 Alm)e* ®
n#
that is
1
nik) = - + g(k) : (%
and then - ‘ .
(6, (), LNy = buor 3 A Vo ton. (10)
n" 20

States in different sublattices are orthogonal by virtue of being in different spin states. but if
states in the same sublattice are to be orthogonal then A{n) = 0 for n lying in the sublattice,
ie. if Z, y i is even, It follows that g{k + E) = —g(k) for K a vector in the reciprocal
lattice to the sublattice that does not also lie in the reciprocal lattice to the full Jattice. Thus,

g(k) is an odd function about the points K /2 and so, with the evenness of g(k), if g(k)
is known over a sub-sector, K say, of the d-dimensional 1BZ then it is given over the
whole 1BZ. These symmetries are then constraints upon the function, but may be effectively
removed if we consider variations of it only over K. Therefore, we shall almost invariably
take reciprocal space sums and integrals to be over these regions, with expressions for the
former implicitly including the different multiplicities for different points in passing from
the IBZ to K,. Furthermore, being at half-filling, the Fermi zone (FZ) for the non-interacting
model is the same as the IBZ of the rec:procai lattice to the sublattice (which we shall denote
by iBZ). ] :

Writing r,, (n) for the discrete spin density and using the Kohn-Sham ansarz, it is given

by : -

ne(my =Y |w(n® ~n)f | SR ¢ §)
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where n(") indicates that the sum is to taken over the sites on which spin o are centred; this
holds in the HF approximation (HFA) too. From equations (7}, (A6) and (A7) it therefore
follows that

1 20(-1)Em

Ra(n) = = + ———— Y [1—4g(k"1"* (12)
K4
or
1 on 1 ‘ 231/2 3d
no(m) =5 +20 (0B (=) [ [1-4gk) TP &% (13)

where the first equation holds when N is finite, the second when N is taken to infinity.

Having found expressions for the n, (n)s we are now ready to discuss the approximations
we shall use 10 calculate the energy, by which we shall always mean the energy per electron.
Let |¥yr} be the HF wavefunction, taken to be

|@r) = [ | (1‘[ él (n‘°>)) 10) (14)

- ot

with n{?) as above, so the energy in the HFA is (lIJHrH;' {Wyg) /N, which is the functional

w1 of LY \ g 3_( _ zm)z
E; [31-8(%) fK ded(mg(k)d k+0[4 Gy J L@ TRk | | (15)

where we have taken the infinite-FD limit and es(k) = 2t Y%, cos(k;) , the nearest-
neighbour tight-binding band for the Hubbard model. £™[g] is stationary, as g(k) is
varied, when

_ calk) 1
8 = e P + R UPT

with the minimum given by the negative root, £5(%k) satisfying the symmetries required of
g, and

(16}

d
’d[81=2(i) f [1—4g(RY1* & k. an
) J,
Combining equations (16) and (17) gives
1}¢ 1
21— dy,
(21:) fxd [Id[g]z—l—(ed(k)/U)il]i/Zd k=1 (18)

$0 I and therefore g and EMF/ U are functions of ¢/ U, the latter of which we shall write
as ¢F(t/U). The integral equation (18) is solved numerically to determine /;(t/ ) and
hence €™ (1 /U)), since

N O (e2(R)/ U iy 1 2
“ (/0= -4(2,,) fx 20U + ) U ¢ FHg ~ /Uy (9)

The integrand of (18) is too complicated to be written in terms of simple functions, but we
may simplify it by the use of elliptic integrals. In one dimension the integral is expressible
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as a simple function involving a complete elliptic integral of the first kind, while in two
dimensions the double integral can be reduced to a single integral with an incomplete elliptic
integral appearing in the integrand. Equation (18) is the same as that derived by Penn [20],
with J; = A /U, where A is the band gap. 7

For the LSDA we use the functional proposed by Svane and Gunnarsson [13], and also
used by Ishii and Terakura [15]. in which the energy is given as a function of the s, (n)s
by

EVSPA = T(ny, ny) + Ung, ny) + EfP®(ny, ny), (20)
where T, the ‘kinetic’ energy term, is
_ * . ! ’ N -
T(ns, ) =3 {;} w* (nyw(n) . @1

U is the Hariree energy, i.e.
R
Utny,m) = o Z (1 () + 1y () 2

and EL3PA ig the exchainge—correlation energy, approximated by

- U -
EZPA g, ny) = m Z {[Hf(ﬂ) + 1 (m)1*?

x [_a - -51([1 + )P+ [ — )] — 2)]} (23)

with y = 2%% — 2 and £(n) the spin-polarization, i.e. ¢ = (r4 — ny)/(ny +ny). The
parameters « and B are taken to be 0.3840 and 0.0705, respectively, so the given functional
reproduces the LSDA results for atomic hydrogen. Writing the kinetic energy term in k-space
and using #1(n)+n,(n) = 1 permits us to.express ELSP* ag the functional of g, EFSPA[g],
where

d
B =3 (5 ) [, catkrao ek +u (1 ~a+Z L3 +az[g1)‘*f3) (24)

and £{g] = 2/,(g], the infinite-N limit having been taken once again, ELSPA[g] is stationary
with respect to variation of g(k) when

(k) 1

8R) = e TP + @R U | @)

~ where -
Jelg) = 3= Za(l + 2afd[g1)”3 (26)

so we may replace Jyig] by J{I4[g]), and the minimum of the energy is again given by the
negative root. Combining (235) and (26), while noting LhaI I4 muost be a function of ¢/ U,

gives
1\ [ J(Lt] U)) ]
I iN=2f— d°k 27
/v (h) fx TGP + o) UPIT @n
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providing a self-consistent equation to sclve for /; and hence J (i), from whlch the energy
eBSPAG/UY = EVPA[g1/U, is calculated, where

o (1Y [ (ealk)/ UY :
@ = 4(23'5) v, TGOV & GaByoyn © ¥
1 2
+5 - +—E—Eza:(1+20'ld(!/U))4"3- (28)

The LSDA therefore leads to a simple set of equations of the same form as those found in
the HF approximation. Furthermore, we have reduced the problem to simple quadrature,
avoiding the partial-differential equations, or rather the analogues that appear in the discrete
case, that arise in the Kohn—Sham scheme,

The sSiC-LSDA is more complicated than the LSDA and requires a little extra explanation.
The ansatz state centred on the lattice site at 7 has an occupation |w(n’ — n)|? on the site
at n'. using (6). So, from the definition of the SIC given by (3), the SIC per electron is

AESC = i ; {-;—(lw(n)lz)z ~ (@ + ﬁ)(lw(n)lz)“"“} : 29

Since a lattice sum is present, for ease of calculation we shall use a finite value of N,
so that instead of functionals of g, we have functions which take as arguments g(k) for all
the discrete k in the region K4, consistent with the FD, which for a kernel f, say, we shall
denote by f({g}). Therefore, w(n) = w(n; {g}), where

wins lgh) = Z[([1+2g(k)1“2+( DR - 2g ()] cosh-m)] . (30)

It is useful to rewrite (30) using the identity
412k -2 =221+ - )2 0gxg1 (3D

as

wim; (gh == 3 {z‘ﬂ [+ DR - agdoy ] costh -n)} 32
Ky

since by doing so we are able to find an expression for g(k) similar to those arising in the
HF and LSD approximations. If we define

li({gh) = 2[1 — 4g(k)*1? (33)
then the energy in the SIC-LSDA is

ESCUgh = o Y calhialhy
Kq

2
+U (; o+ —ﬁ - EZ 1420 L(ign]” ) - AESS((ghy/N. (34)
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We make this stationary by solving 3 E5C({g})/ag(k) = O for all the ks in K,;. The
solutions are

ea(k) - 1

) 35
whf:re
L 1
- Hy(k) = Z {(gwm)(w{n)z)m _ Ew(“)g)
21/2(__1)E+Z. Ri COS(k ) .
T S Rl = Ag e )] 36)
_and
1 if & is in 1BZ

kY= .
S [ (==& otherwise. 37

The negative root again corresponds to the minimum of the energy and (35) also displays
the correct symmetries. Uniike in the prévious two approximations, we are unable to reduce
the problem to determining just one quantity self-consistently; instead the full fanction g
must be calculated so. We perform this calculation by taking, for given r/U, the LSDA
result as our first iteration for g(k) and then iterate towards a consistent answer. The form
of g, while like that obtained for the other two approximations, differs in that ‘we now have
a k-dependent “gap’, a consequence of the non-local nature of the SiC.

Inspection of {36) reveals that H(k) is undefined when g{k) = 0. This is not a serious
problem since, by using (30) for w(n) when extremizing the energy, we may obtaint an
equation for g, valid when g = (. Using this equation we may show that starting from a g
that is zero on the Fermi surface, which holds for g in the LSDA, all subsequent iterations
of g are zero on the Fermi surface too. Since g is also zero on the Fermi surface in the
HF approximation, then all three approximations yield a state that is an antiferromaghetic
insulator, In one dimension the Hubbard model, while an insulator at half-filling [21], is
not an antiferromagnetic state, but in higher dimensions this may well be the case [24, 25).

 While the SIC-LSDA equations are more complicated than those for the other
approximations, and we have to be careful when g(k) = 0, using our method we have
not employed the Kohn-Sham scheme and hence we have been able to ignore the extra
difficulty the SIC-LSDA introduces by way of the orbitals no longer being orthogornal.

We have thus found the energy in the three approximations of interest and in each case
the energy has the form E = 3 3", e(k)n(k) -+ F[n], where we have used » instead of £,
the k-sum is over the entire 1BZ and the spin sum is shown explicitly. From the Feynman—
Hellmann theorem, if we regard the band-structure as a variable, then the momentum
distribution follows from the exact energy, £, via n(k) = 8£/8¢(k), which provides a
method of calculating the approximate n(k). if we use E mstead Therefore, using £ we
can obtain

(kY[ . 8F
se(k) ik HZ Se (k) [ (k) + Sn(k)] -G8

so when £ is stationary, i.e. the term in square brackets is zero, SE/$n(k) = n(k) which
means that the n(k) appearing is indeed an approximation to the momentum distribution.
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With our method we may also calculate the local moment, Ly, defined by Shiba to be

Lo= %?%zé(mzlwo) (39)
that is
3 " N
Lo = g7 2090l (3y ) + g m) = 2 ) () I¥0) 40)

where |y} is the exact ground state. Using the Feynman-Hellmann theorem again, it
follows that

1 3(Wo|H W, 1 AR ‘

N = Ry el ()19 @b
and therefore

C 332 dUe(t/U) /1)

L=yt o -

where e(t/U) = {%II—:’ |¥o)/UN, from which we calcnlate L.

Finally, before proceeding to the results, we should comment on the value of the
approximations used. The LSD and sIC-LSD approximations used here both employ a
rather arbitrary functional derived from calculations on the homogeneous electron liquid.
The HEA, however, is simply the expectation value of the Hamiltonian in the HF state, so
there can be no doubt about fortn of the functional. Furthermore, as it is the only strictly
variational approximation to the energy, it provides the only upper bound to the exact energy.
However, the main thrust of the paper is to investigate the improvement effected by the SIC
on the LSD and to demonstrate the simplicity of the momentum density functional approach
for a one-band antiferromagnetic insulator.

3. Results

Since all the approximations used are devised to calculate the energy, we shall discuss this
first. In the limit +/¥/ < 1, expressions can be found for the limiting forms of the energy.
Since g = O(t/U), then g < 1 100, and so it follows, from (17) that

1 1\ 2 1 .
I“‘E"A'(EE) Ldg(k)dk+0(3)- (43)

Using this we can proceed 10 minimize the energy in the HFA and LSDA analyticaily and
doing so we find that for the HFA, EXF ~ —2dr/U, while for the LSDA we obtain
EPPA % U(1/2—a—B) — (33//2”34,3) 12/U = 0.0455U — 4.3894d:2/U. For the
SIC-LSDA we also need to determine w(n) in this limit, Wthh is readily done by expanding
the square root in (7), giving

1 .
w(n) =dp0+ = ;g(k)e"““ - Eg(kF ko 4 0(g%) (44)
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where the infinite-¥ limit has been taken. We are now able to minimize the energy
analytically once again, giving ESIC ~ —24:%/ AU, where A = 1—4(a+B)/3+2°°48/3y,
50 2/A = 2.3539. .

In the opposite limit, (/U > 1, the electrons are only weakly interacting and so the
momentum distribution may be approximated by the filled FZ, i.e.

1 e L r ‘
= if k is in the FZ
gy =17% (43)
=) otherwise

50 I3 0. The kinetic energy, T, say, is the same in ali three approximations, being

atjm d=1

T S 46
4 {(4z/n)2 d=2. 6o
So in the limit /U > 1 we have EXF =~ T, + U/4 and EFPA ~ T, + (% —o)U. For
the SIC-LSDA we must calculate the w(n) using (43) and then perform the lattice sums

appearing in the SIC; the results are shown in table 1.

Table 1. Limiting forms of the energy.

Limiting form of the energy

HU e/ U1
Calculation 1» . 20 1D . 2D
Exact 2772 4U —4.693 U (/) + U4 {4/ + U4
HF =220 42U (4/my + Ujd @myr+ U4
LSDA —4.3892/ U + 004550  —8.7792/ U+ 0.04550  (4/m)e+0.116U  {4/m)%r 4 0.116U
sic-Lspa  —2.354:% U —a4.712 U . @imt + 02470 (d/m)%e 402330

in table 1, for one and two dimengions, we array the limiting forms of the energy in
the three approximations used for comparison with the exact results: the analytic result
of Lieb and Wu [21] in one dimension and in two- dimensions numerical results for the
spin-% Heisenberg antiferromagnet [29], which is an effective Hamiltonian derivable. from
the Hubbard Hamiltonian in the limit ¢/ &/ < 1 and the perturbation result for ¢/ U > 1. At
half-filling and ¢/U > 1, {io(n)) ~ L and (i1(n)i (n)) =~ L, from which the last results
follow. Our limits for the energy in the LSD and SIC-LSD approximations in one dimension
agree with those of Svane and Gunnarsson [13]. We can see that the HFA is reasonable in
the limit ¢/ U < 1 and is exact in the opposite limit. The LSDA is fairly poor in both limits
and both dimensions, while the SIC-LSDA is generally good and exceptional for ¢/U « 1
in two dimensions. The SIC-L3DA is also better than the LSDA when ¢/ U > 1, when the
orbitals are most extended. For a totally delocalized Bloch state the sIC is O(N17) and
- 80 vanishes as N — oo. However, the ansatz states used here do not tend to such a
dejocalized state as a Bloch state since the SIC remains non-zero.

We have also calculated for the three approximations the energy in one and two
dimensions for a wide range of ¢/ I/, which we display in figures 1 and 2, as functions
of U /4t and U/, respectively, following Svane and Gunnatsson [13, 14]. In these and all
the other calculations of the SIC-LSDA, we have taken a chain of 258 sites and a grid of
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64 x 64 sites in one and two dimensions, respectively, unless otherwise noted. For such
lattice sizes, the results are practically unchanged by increasing the size further, except in
the case we shall detail below. For comparison we include Lieb and Wu's exact result
for one dimension [21] and the guantum Monte Carlo (QMC) results of Hirsch [24] and
Moreo et @l {25] in two dimensions. Our results are in good agresment with the few
numerical values given in [15] (differing by at most 0.001) and also appear to agree with
those in [13, 14].

0.0 e e TR
-0.2 k- ]
a4k J _
o o / —- = Harree-Fock
! ——-LSDA
! — SLC.-LS.D.A
08 - ---= Exact _‘
0.8 + |
1.0 . e e _ ‘
0.0 1.0 2.0 3.0 4.0 5.0
4Uk

Figure 1. Plot of the total energy per site divided by U, for the half-filled Hubbard model in
one dimension, € ¢/ LN, against 44//¢, in the Hartree—Fock, LSD and sic-LSD approximations.
The exact result of Lieb and Wu [21] is included for comparison.

The results for the momentum distribution in one dimension are plotted over the 1BZ
in figure 3 for :/U = 0.1. For reference we include Takahashi’s [27] solution for n(k),
corect to second order in ¢/U, In two dimensions we plot our solutions for n(k), along
the line X-I'-M, in figure 4, again for /U = 0.1. Takahashi’s [27] result for a spin-
wave approximation is included for comparison. We find that in the LSDA the momentum
distribution tends most quickly to that given by (43) showing that the LSDA leads to the
most delocalized solutions,

This may be seen more directly by determining the coefficients w(m), which give the
weight of the single-particle state on other sites. The results are displayed in figures 5 and
6 for one and two dimensions respectively with /U = 0.1 and similardy in figures 7 and
8 for 1/ U/ = 1.0. In two dimensions we display w(n, 0). The greater delocalization of the
LsDA compared with the HF and SIC-L.5D approximations is readily noted.

The results for the local moment are displayed in figures 9 and 10 for one and two
dimensions respectively, with the two dimensional QMC results of White ez @l [26] included
too. We see that once again the SIC-LSDA is generally better than the HFA, except as
t/U — oo, when the HFA becomes exact. However, the LSDA is plainly wrong for all
values of ¢/ U, whereas Svane and Gunnarsson [13, 14] appeared to obtain more reasonable
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0.0 . o
L2k E
g 04 J —-— Hartree-Fock .
~—- LSDA.
— 8.1.C.-LS.D.A
i T Hirsch
06 & Mereo et al. ]
08 r |
-1.0 L ‘ . - - — )
0.0 2.0, 10.D 15.0 20.0

Uit

Figure 2. Plot of the total energy per site divided by U, for the half-filled Hubbard model in
two dimensions, ez(t/ ), against /¢, in the Hartree-Fock, LSD and sic-L.SD approximations.

. The oMC results of Hirsch [24] and Moreo ef al {25] on gnds of 8 x & and 12 x 12 sites
respectively. Quoted error bars are included for the former,

1.0 ——— , :
—-—~ Hartree-Fock
- —- LSD.A.

0.8 - —— 81C-LSD.A |

(k)

0.0 -

0.0 0.5

10 15 T 2.0
Wi

Figﬁre 3. Plot of the momentum distribution, n(k), for the half-filled Hubbard model in one
dimension, with ¢/ U = 0.1, in the &7, LSD and 51c-LSD approximations. The dotted line is the
exact result of Takahashi [27].
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10—

nik)

0.4 + —-— Hartree-Fock
——- LS.DA
— SACL8DA
02
0.0 :
(1,0} {0.0) (mm)
M r X
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Figure 4. Plot of the momentum distribution, a(k), for the half-filled Hubbard model in
two dimensions, with (/U = 0.1, along the M—"-X line, in the gp, LSD and sic-LSD
approximations. The dotted line is Takahashi’s result in the spin-wave approximation.
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Figure 5. Plot of w(n) in one dimension for /U = 0.1,

results. The explanation of this discrepancy is as follows; Svane and Gunnarsson appear to
have used the result of the HFA, Ly = 3(1 —2{n4)(n,))/4, which, is incorrect for the LSDA
and SIC-LSDA. Thus, while in the LSDa the orbitals are the most delocalized. the energy
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Figure 7. Plot of w(n) in one dimensions for 1/ U = 1.0.

functional used is an exceedingly poor approximation to the correlation energy.

10

We have also calculated the-sublattice magnetization m = |n; — n,|, which is shown
in figures 11 and 12. Note that for the SIC-LSDA in two dimensions, m remains finite as
U — 0, which is a finite-size effect. Instead, m = (4v — 13/2v? if the number of sites
N.=.{4v)?, which arises because when I/ = 0, the summand of /, is zero for all points
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Figure %. Plot of the local moment, Lo, in one dimension for the three approtimations
considered, along with the exact result from Lieb and Wa.

in K3, except for the points on the Fermi surface, where it equals 1. Thus, because 7,
is a sum, these points have a finite weight and so m is finite too, but it does tend to the
correct imit, m = (, as N — oo. Similarly, in one dimension, the summand of /; is also
only non-zero, being equal fo 1, on the Fermi surface, which is now just the two points
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Figure 10, Plot of the local moment, Lo, in two dimensions for the three approximations
" considered, along with the QMC results of Hirsch [24], White e @l [26] and Moreo et af [25],
on grids of 6 x 6, 4 4 and 12 x 12 sites, respectively.

k = £x. However, if we take N = 2(2v + 1), these points are not included in the £-sum
and so we obtain the correct limit with no finite-size problems, which is in contrast to the
two-dimensional case where no such judicious choice of N exists. Finally, we compared
our results with those of Miyazaki er al [16], using N = 256 for the SIC-LSDA, and found
that our results differed by no more than 0.001. ( The results published in [15] for ny —ny
are erroneous and have been corrected in [16].)

Finally, before passing onto the conclusions we should like to explain that the choice of a
finite system in calculating the SIC-LSDA was prompted by the requirement of having to find
the function g self-consistently, which can only be achieved numerically by so calculating
the unknown function at a finite set of points. Thus, a finite system is quite atractve as
not only do we have a finite set of points, but these points are not arbitrarily chosen, but
are fixed by the choice of sysiem size and boundary condition. However, a calculation for
an infinite system is not rued out, since any k-integral present will numerically be written
as a sum and s0 we once again have g only over a finite set of points, but now a set that
is somewhat more arbitrary than before. We have tried just such a calculation, using the
Cunningham points [28] for the square Fermi-zone for performing the k-integrals, which
has the advantage of not including those points at which the integrand of /» would have
non-zero values for U = 0 and so ensuring the correct limit for m. Purthermore, we deal
with the n sum in H,(k) by summing it to convergence for each k-point. Unfortunately,
this method was found to be numerically stable only for certain values of ¢/ U, so we have
not presented the results here. However, we mention this scheme to indicate that treating
the infinite case is, at least in principle, possible.
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Figure 11, Plot of the sublattice magnetization, m, in one dimension, calculated in the three
approximations considered.
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Figure 12. Plot of the sublattice magnetization, m, in two dimensions, calculated in the three
approximations considered.

4, Conclusions

By constructing a set of ansaiz orbitals for the ground state of a d-dimensional Hubbard
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model on a square lattice and at half-filling we have been able to obtain energy functionals
of the momentum distribution in the HF, LSD and SIC-LSD approximations. We have
calculated the energy in these approximations by minimizing with respect 1o the momentum
distribution and have been able to obtain expressions for the limiting forms of the energy.
All calculations have been at worst quadrature as our method avoids having to solve
finite-difference equations. Qur implementation also avoids the problem of non-orthogonal
orbitals in the SIC-LSDA. Our results are in generally good agreement with those already
published [13-16] and those obtained by other methods [24. 25], except where noted above.

The HFA is reasonable across the whole range of ¢/ U/, while the LSDA is always fairly
poor. The addition of a SIC to the LSDA leads to a great improvement for all values of
t/U, with the SIC-LSDA being the best approximation of the three when /U < 1. This
improvement is most readily seen in the results for the local moment where, despite the
LSDA calculation being so very poor, the SiC almost totally comrects it. 'We may therefore
conclude that the SIC-LSDA is an improvement upon the LSDA in all the examples considered.
What is more, even though the latter employed a somewhat arbitrary functional for the XC
energy and could lead to results that were clearly in error, e.g. the energy as ¢t/ U — 0, the
SIC-LSDA corrected these errors almost wotally.

The method described in this paper assumes a system with one electron per site and
just such a system is the low-density state of the electron liquid which we shall discuss
glsewhere [29]. '
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Appendix. Sub-lattice sums

As we have a Néel state present we are naturally led to consider sums over the sublattices
of terms like €™, Let us asseme that we have a d-dimensional cubic lattice, with lattice
constant a, and apply periodic boundary conditions o a section containing N unit cells and
of volume V., which we shall refer t0 as the fundamental domain (FD). Now partition the
sites between two interpenctrating sublattices, labelled + and —, and consider

S(k,z) =Y e@n) (AD

where the sum is over all the sites in the + sublatfice, assumed to include the origin. S{k. &)
is a periodic function of =, with the periodicity of the sublattice, if in the FD along any line
of sites, parallel to a primitive lattice vector, there are as many + as — sites. Given this
then N must be an even number. The periodicity of S permits us to write it as

St,z) = Y sp(kj™= ' (A2)
. E ’
with
o= o f~ Sk, me~F= g (A3)
v JOC
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where k is a reciprocal sublattice vector and ¥ is the volume of the sublattice unit cell,
which is the region of integration, denoted by UC. From (Al) and (A3) we obtain

Vv
(k)= =5k (A4)
Since ¥ = 2v it follows that

N -
Sk, z) = ..:.Z_ Z Sk,éelk-m (A3)
k

and therefore

Z —1kn“' _Zakk (A6)

nt

Since for all the — sites, n™ = n+a holds. if @ = a(1, 0, ..., 0), then from (A1) and (A6)

Z ~ikn zmzakkelka i | (A7)

follows.
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