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Abstract. We investigate the half-filled Hubbard model in one and two dimensions using 
approximations to the energy expressed as fundonals of the mmenNm distribution. The 
functionals are calculated using the Hanree-Fa& approximarion and density funnional theory 
in the local-spindensity and self-interaction-cored (SIC) local-spin-density appronimarimr 
(LSDA) by expressing the ground-state spin densities as a variational amatz in which the 
mmentum distribution enten as a variational quantity. We calculate the momenhlm distribution, 
energy and local moment, as well as wr omalr orbitals. in all three approxlmalions and find 
that the SIC always improves upon the LSDA. 

1. Introduction 

The theoretical study of high-temperature superconductivity has been an are+ of intense 
investigation for the past few years now, since the discovery of the ceramic superconductors 
in late 1986 [l], with research being carried out on both real materials and model 
Hamiltonians. While many different approaches are taken towards the latter, the former 
problem may be best studied using density functional theory (DFr) L2-41. 

D F f  provides a formally exact approach; the energy for in interacting system of 
electrons, say, whether in an extemal field or not, is expressible as a functional of the 
electronic density and is minimized at the ground-state density, with the Kohn-Sham 
scheme 131 providing a method of determining the ground-state energy and density. 
However, the exact functional is unknown and so it has to be approximated; This may 
be achieved by splitting up the energy into three funaionals of the spin densities, n,(x): 
T [ q ,  n i l ,  the kinetic energy for a non-interacting set of electrons, U [ q ,  n ~ ] ,  the Hanree 
electrostatic energy and Ex&+, n ~ ] ,  the exchange and correlation (xc) energy. A fourth 
term arises if extemal fields are considered. but since none will be present, we shall ignore 
it. In this manner T and U are relatively straightforward to calculate, while EXC is unknown 
and must be approximated. One approach is the local-spin-density approximation (ISDA), 
which is quantitatively successful in many cases, but fails where strong electron correlation 
effects, leading to localized states, are present. The high-T, materials provide suitable 
examples, where LSDA calculations fail to give antiferromagnetic insulating ground states, 
e.g. for LazCuOa [5-91 a6d YBazCu3Os [91. 

In order to deal with these failures of the LSDA and to improve upon it, the use of a 
Self-interaction-corrected (SIC) LSDA was proposed [IO]. In the KohnSham~scheme [4] the 
electrons occupy fictitious single-particle states, with wavefunctions &e (5) (i denoting all 
the quantum numbers of the state, other than the spin, U ) ,  related to the me ground-state 
spin densities, n,,(z), by 

n , ( z )  = 1 IM~)I' (1) 
W E  
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where the sum is over the occupied orbitals with spin U .  However, in the LSDA each state 
has a spurious electrostatic self-interaction. which increases as they localize. The SIC-LSDA 
is then defined to be the LSDA with the self-interaction for each individual occupied State 
subtracted, i.e. 
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occ 

(2) 

(3) 

E:: = E~~DA[nirnrl - ~ ~ ( L ' [ n i , l +  EXC LSDA [nLo . 1) 
o i  

E;: = Ek:DA[n+, n i l  - A  E;~[{ni,ll 

where ni, (I) is the density due to &(i) and the braces indicate that the functional takes as 
arguments the densities of all the occupied stales. The SIC introduces an orbital-dependent 
potential and the eigenstates of the effective Hamiltonian are therefore not automatidly 
orthogonal, so the expectation value of this Hamiltonian is not invariant under a unitary 
change of states. The Hamiltonian can now exhibit a broken symmetry between extended 
and localized states, which is lacking in the LSDA, but the implementation of the SIC-LSDA 
is more complicated. However, Svane and Gunnarsson have described a method [I l l  that 
they claim is only slightly more difficult to implement than the LSDA and have applied it to 
the transition metal oxides, obtaining the correct nature of the ground states. Furthermore, 
Svane 1121 h a  recently studied La2CuOa using this scheme and again the SIC-LSDA leads 
to the correct ground state, with a moment on the Cu in good agreement with experiment. 

The more difficult nature of the SIC-LSDA led 6rst Svane and Gunnarsson [13,14] then 
Ishu and Terakura [I51 and later Miyazaki, lshiiand Terakura [I61 to use the Hubbard model 
as a test of their algorithms; the first two papers dealt with the one- and two-dimensional 
models, while the last two only considered the one-dimensional model, but both employed a 
discrete DFr  (DDFT) [17] extended to the SIC-LSDA. Svane and Gunnarsson [ 141 and Miyazaki 
er a[ [I61 have also investigated the two-dimensional dp model using DDFT, while Majewski 
and Vogl [IS. 191 have similarly examined the one and two-dimensional Hubbard-Pcierls 
models. In this paper we return to the Hubbard model. employing an ad hoc, but much 
simpler method. by which we are able to express the energy, in the Hartree-Fock (HF), LSD 
and SIC-LSD approximations, as a functional of the momentum distribution. In section 2 
we describe our method and in section 3 we present our results, which expand upon those 
previously published. 

2. Method 

Our method is to construct a set of localized states, in which the momentum distribution, 
n(k),  enters as a variational quantity, from which the spin densities may be calculated. 
assuming a Nee1 ordered antiferromagnetic spin arrangement. The expectation values of the 
site occupation operators are then given by functionals of the momentum distribution and 
hence the energy, which we shall evaluate in the HF, LSD and s i c - L S D  approximations. is 
given as a functional of the momentum distribution too. 

Since it will prove to be convenient, we write the Hubbard model, taken to be on a 
d-dimensional square lattice (with lattice constant a = 1 and d equal to 1 or 2), as 

where Wj(n) is the creation operator (CO) for an electron in the Wannier state centred on 
the lattice site at n = (al . .  . . , nd) with spin U ,  so i,(n) = We - t  (n)@,,(n) and (, ) indicates 
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that the sum is to be taken over all ordered pairs of nearest neighbours. The n Sums %e 
assumed to be over a d-square region of the lattice containing N sites (where N is even: 
see the appendix), with periodic boundary conditions applied. which shall be called the 
fundamental domain (FD). 

- t  Letting &(k) be the CO for the Bloch state with wavenumber k and spin U ,  we define 
our localized unsutz state centred  on^ the lattice site n with spin U to have CO d(n)  given 
by .. . 

where n(k )  is the momentum dsmbution of.either spin (i.e. n(k )  = n,,(k)), assumed to be 
an even function of k, 

(7) 
1 

w ( n )  = [~n(k)]"* eik.n 
k 

and the k-sums are over the first Brillouin zone (1BZ). 
Since we are at half-filling we may write 

that is 

(9 )  
1 

ntk) = - + g ( k )  2 
~~ and then 

(10) 

States in different sublattices &e orthogonal by virtue of being in different spin states. but if 
states in the same sublattice are to be orthogonal then A(n) = 0 for n lying in the sublattice, 
i.e. if ni is even. It follows that g(k+ I?) = -g(k) for K a vector in the reciprocal 
lattice to the sublattice that does not also lie in the reciprocal lattice to the full lattice. Thus, 
g(k )  is an odd function about the points K/2 and so, with the evenness of g(k) ,  if g(k) 
is known over a sub-sector, Kd say, of the d-dimensional IBZ then it is given over the 
whole IBZ. These symmetries are then constraints upon the function, but may be effectively 
removed if we consider variations of it only over Kd. Therefore, we shall almost invariably 
take reciprocal space sums and integrals to be over these regions. with expressions for the 
former implicitly including the different multiplicities for different points in passing from 
the IBZ to Kd. Furthermore, being at half-filling, the Fermi zone (E) for the non-interacting 
model is the same as the 1BZ of the reciprocal lattice to the sublattice (which we shall denote 
by I ~ Z ) .  

Writing n,(n) for the discrete spin density and using the Kohn-Sham unsurz, it is given 

[&,(n), cmr(n')J+ -t = L,, A(n")&.,,-,. 
n"+O 

d 

. ,  

by 
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where n(“) indicates that the sum is to taken over the sites on which spin U are centre& this 
holds in the HF approximation (HFA) too. From equations (7), (A6) and (A7) it therefore 
follows that 
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or 

where the first equation holds when N is finite, the second when N is taken to infinity. 
Having found expressions for then, (n)s we are now ready to discuss the approximations 

we shall use U, calculate the energy, by which we shall always mean the energyper elecaon. 
Let lulm) be the HF wavefunction. taken to be 

with n(“) as above, so the energy in the HFA is (ul~~It?/ul~~)/iV, which is the functional 

where we have taken the infinitem limit and € d ( k )  = 21 ~ f = ,  c o s ( k ~  , the nearest- 
neighbour tight-binding band for the Hubbard model. Ew[g] is stationary, as g(k)  is 
varied, when 

with the minimum given by the negative root, E&) satisfying the symmetries required of 
g, and 

Combining equations (16) and (17) gives 

so Id  and therefore g and Em/U are functions of [/U, the latter of which we shall write 
as e H F ( l / U ) .  The integral equation (18) is solved numerically to determine /,&/U) and 
hence c H F ( t / U ) ,  since 

The integrand of (18) is too complicated to be wriuen in terms of simple functions, but we 
may simplify it by the use of elliptic integrals. In one dimension the integml is expressible 



The Hubbard model a1 half-Jlling 6207 

as a simple function involving a complete elliptic integral of the first kind, while in two 
dimensions the double integral can be reduced to a single integral with an incomplete elliptic 
integral appearing in the integrand. Equation (18) is the s h e  as that derived by Penn [ZO], 
with I d  = A / U ,  where A is the band gap. 

For the LSDA wc use thc functional proposed by Svane and Gunnarsson [131, and also 
used by Ishii and Terakura [151. in which the energy is given as a function of the n,(n)s 
by 

EEDA = T(np,  n+) + U(nt,n+) + nr). (20) 

where T ,  the ‘kinetic’ energy term. is 

U is the H m e e  energy, i.e. 

and is the exchange-correlation energy, approximated by 

with y = z4I3 - 2 and <(n) the spin-polarization, i.e. < = (n+ - n+)/(nt + n+) .  The 
parameters 01 and 8 are taken to be 0.3840 and 0.0705, respectively, so the given functional 
reproduces the LSDA results for atomic hydrogen. Writing the kinetic energy term in k-space 
and using nt(n)+nL(n) = 1 permits us torexpress EEDA as the functional of g, ELSDAlgl, 
where 

and <[g1 = 2Id[g], the infinite-N limit having been taken onceagain. ELsDA[g] is stationary 
with respect to variation of g(k) when 

where 

so we may replace by J(Id[g]). and the minimum of the energy is again given by the 
negative root. Combining (25) and (26), while noting that /d must be a function of t / U ,  
gives 
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providing a self-consistent equation to solve for Id and hence J ( / d ) ,  from which the energy 
@ ” * ( I / U )  = ELSDA[g]/U, is calculated, where 

S M Manning and D M Edwards 

The LSDA therefore leads to a simple Set of equations of the same form as those found in 
the HF approximation. Furthermore, we have reduced the problem to simple quadrature, 
avoiding the partial-differential equations, or rather the analogues that appear in the discrete 
case, that arise in the KohnSham scheme. 

The SIC-LSDA is m m  complicated than the LSDA and requires a little extra explanation. 
The a n s m  state cenmed on the lattice site at n has an occupation (w(n‘ - n)l? on the site 
at n‘. using (6). So, from the definition of the SIC given by (3), the SIC per electron is 

Since a lattice sum is present, for ease of calculation we shall use a finite value of N ,  
so that instead of functionals of g, we have functions which take as arguments g(k) for all 
the discrete k in the region Kd, consistent with the FD. which for a kernel f ,  say, we shall 
denote by f({g)). Therefore, w ( n )  = w ( n ;  [g)), where 

w ( n ;  [g)) = 

It is useful to rewrite (30) using the identity 

2 [ ([l + 2g(k)I1l2+ ( - l ) ~ , n z [ l  - Zg(k)]’/’) cos(k. n ) )  . (30) 
K d  

[ 1 + X ] ~ ~ * [ [ 1 - ~ ] ~ ~ ~ = 2 ~ ~ ~ [ 1 * ( 1 - X ~ ) ~ ’ ~ ] ’ ~ ~  O < X <  1 (31) 

as 

since by doing so we are able to find an expression for g ( k )  similar to those arising in the 
HF and LSD approximations. If we d e h e  

then the energy in the SIC-LSDA is 
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We make this stationary by solving aE21C((g))/ag(k) = 0 for dl the ks in K d .  The 
solutions are 

where 

The negative root again corresponds to the mini" of the energy and (35) &o displays 
the~correct symmetries. Unlike in the previous two approximations, we are unable to reduce 
the problem to determining just one quantity self-consistently; instead the full function g 
must be calculated so. We perform this calculation by taking, for given [ / U ,  the LSDA 
result as our first iteration for g(k) and then iterate towards a consistent answer. The form 
of g, while like that obtained for the other two approximations, differs in that we now have 
a k-dependent 'gap', a consequence of the non-local nature. of the SIC. 

Inspection of (36) reveals that &(k) is undefined when g(k) = 0. This is not a serious 
problem since, by using (30) for w(n) when exmmizing the energy, we may obtain an 
equation .for g, valid when g = 0. Using this equation we may show that starting from a g 
that is zero on the Fermi surface, which holds for g in the LSDA, all subsequent iterations 
of g are zero on the Fermi surface too. Since g is also zero on the Fermi surface in the 
HF approximation, then @l three approximations yield a state that is an antiferromagnetic 
insulator. In one dimension the Hubbard model, while an insulator at half-filling [21], is 
not an antiferromagnetic state, but in higher dimensions this may well be the case p4.251. 

While the SIC-LSDA equations are more complicated than those for the other 
approximations, and we have to be careful when g(k )  = 0, using our method we have 
not employed the Kohn-Sham scheme and hence we have been.able to ignore the exua 
difficulty the SIC-LSDA introduces by way of the orbitals no longer being orthogonal. 

We have thus found the energy in the three approximations of interest and in each case 
the energy has the form E = E,, x k k ( k ) n ( k )  + Fin], where we have used n instead of k, 
the k-sum is over the entire 1BZ and the spin sum is shown explicitly. From the Feynman- 
Hellmann theorem, if we regard the band-skucnue as a variable, then the momentum 
distribution follows from the exact energy, &, via~n(k) = sE/se(k) ,  which provides a 
method of dculating the approximate n(k). if we use E instead. Therefore, using E we 
can obtain 

so when E is stationary, i.e. the term in square brackets is zero, 6E/6n(k)  = n(k) which 
means that the r~(k )  appearing is indeed an approximation to the momentum distribution. 
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With our method we may also calculate the local moment, LO, defined by Shiba to be 

that is 

where 1 % )  is the exact ground state. Using the Feynman-Hellmann theorem again, it 
follows that 

and therefore 

3 3 i2 d(Uc(r/U)/r) 
4 2 U z  d(i/U) 

Lo = - + -- 

where €@/U) = (*oIfil~o)/UN, from which we calculate LO. 
Finally, before proceeding to the results, we should comment on the value of the 

approximations used. The LSD and SIC-LSD approximations used here both employ a 
rather arbitrary functional derived !?om calculations on the homogeneous electron liquid. 
The HFA. however, is simply the expectation value of the Hamiltonian in the HF state, so 
there can be no doubt about form of the functional. Furthermore, as it is the only strictly 
variational approximation to the energy, it provides the only upper bound to the exact energy. 
However, the main thrust of the paper is to investigate the improvement effected by the SIC 
on the LSD and to demonstrate the simplicity of the momentum density functional approach 
for a oneband antiferromagnetic insulator. 

3. Results 

Since all the approximations used are devised to calculate the energy, we shall discuss this 
first. In the limit r / U  << 1, expressions can be found for the limiting forms of the energy. 
Since g = O ( t / U ) ,  then g << 1 too,and so it follows. from (17) that 

Using this we can poceed to minimize the energy in the HFA and LSDA analytically and 
doing SO we find that for the HFA, E F  k -2drz/U, while for the LSDA we obtain 
EpDA (I (1/2 - (Y - p )  - d (3y/2‘”4,!?) t 2 / U  = 0.0455U - 4.3894dr2/U. For the 
SIC-LSDA we also need to determine w(n) in this hnii which is readily done by expanding 
the square root in (7). giving 
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where the infinite# limit has been taken. ~ We are now able to minimize~the energy 
analytically onceagain, giving sz - 2 d t 2 / A U ,  where A = 1-4(~+p) /3+2~P48/3y ,  
SO 2 / A  = 2.3539. 

In the opposite limit, r / U  >> 1, the electrons are only weakly interacting and so the 
momentum disuibution may be approximated by the filled FZ, i.e. 

if k is in the FZ 

otherwise 
g(k) = 

2 

SO Id 0. The kinetic energy, Td say. is the same in all three. approximations, being 

41jn d = l  
Td = [ (4t/n)’ ’ d = 2. 

(45) 

(46). 

So in the h i t  r / U  >> 1 we have E T  = Td + U14 and EFDA M T, + (i - a)U. For 
the SIC-LSDA we must calculate the w ( n )  using (45) and then perform the lattice sums 
appearing in the SIC; the results are shown in table 1. 

Table 1. Limiting forms of the energy. 

Limiting form of the energy 

I / U  << 1 t / u>>1  

Calculation ID 20 I D  20 

Exaa -2.7112/u -4.69rZ/ U (4/n)? i U/4 (4/nj21 + U14 
HF -212/u -4lZ/U . ~ (4/n)t+ U/4 (4In)’r + U/4 
LSDA -4.389?2/U +O.O455U -8.119?Z/U+0.0455U (4/n)r+O.l16U (4/nj21 + 0.116U 
SIC-LSDA -2.35412/u -4.7112/U (4lnN + 0.247U (4/n)’l+ 0.233U 

In table 1, for one and two dimensions, we m y  the limiting forms of the energy in 
the three approximations used for comparison with the exact results: the analytic result 
of Lieb and Wu I211 in one dimension .and in  two^ dimensions numerical results for the 
spin-f Heisenberg antiferromagnet [29], which is an effective Hamiltonian derivab1e.f” 
the Hubbard Hamiltonian in the limit I /  U << 1 and the pewbation result for t /  U >> 1. At 
half-filling and r / U  >> 1, (ri,(n)) = f and (i+(n)kr(n)) = 4, from which the last results 
follow. Our limits for the energy in the LSD and SIC-LSD approximations in one dimension 
agree with those of Svane and Gunnarsson 1131. We can see that the € F A  is reasonable in 
the limit I /  U << 1 and is exact in the opposite limit. The LSDA is fairly poor in both limits 
and both dimensions, while the SIC-LSDA is generally good and exceptional for I l l /  << 1 
in two dimensions. The SIC-LSDA is also better than the LSDA when r / U  >> 1, when the 
orbitals are most-extended. For a totally delocalized Bloch~state the SIC is O ( N ’ p )  and 
so vanishes as N -+ CO. However, the ansafz states used here do not tend to such a 
delocalized state as a Bloch state since the sIc.remains non-zero. 

We have also’ calculated for the three approximations the energy in one and two 
dimensions for a wide range of r / V ,  which we display in figures 1 and 2, as functions 
of U141 and U / I ,  respectively, following Svane and Gunnarsson [13,141. In these and all 
the other calculations of the SIC-LSDA, we have taken a chain of 258 sites and a grid of 
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64 x 64 sites in one and two dimensions. respectively, unless otherwise noted. For such 
lattice sizes, the results are practically unchanged by increasing the size further, except in 
the case we shall detail below. For comparison we include Lieb and Wu’s exact result 
for one dimension [21] and the quantum Monte Carlo (QMC) resulfs of Hmch [%I and 
Moreo er al [25] in two dimensions. Our results are in good agreement with the few 
numerical values given in [15] (differing by at most 0.001) and also appear to agree with 
those in [13,14]. 
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--. L.S.D.A. - 5.I.C:L.S.D.A. 
Exact ..__ 

I 
I 
I , 

I . ,. , -1.0 
0.0 1 .o 2.0 3.0 4.0 5.0 

4un 

Figure 1. Plot of the total energy per site divided by U. for the half-filled Hubbard model in 
one dimension. q V / U L  against 4U/1, in the Hanree-Fock, LSD and SIC-LSD approximations. 
The e m s  result of Lieb and Wu [Zl) is included for canparism. 

The results for the momentum distribution in one dimension are plotted over the IBZ 
in figure 3 for [ / U  = 0.1. For reference we include Takahashi’s [271 solution for n(k), 
correct to second order in < / U .  In two dimensions we plot OUT solutions for n(k), along 
the line X-r-M, in figure 4. again for r / U  = 0.1. Takahashi’s [27] result for a spin- 
wave approximation is included for comparison. We find that in the LSDA the momentum 
distribution tends most quickly to that given by (45) showing that the LSDA leads to the 
most delocalized solutions. 

This may be seen more directly by determining the coefficients w(n) ,  which give the 
weight of the single-particle state on other sites. The results are displayed in figures 5 and 
6 for one and two dimensions respectively with [ / U  = 0.1 and similarly in figures 7 and 
8 for [/U = 1.0. In two dimensions we display w ( n ,  0). The greater delocalization of the 
LSDA compared with the HF and SIC-LSD approximations is readily noted. 

The results for the local moment are displayed in figures 9 and 10 for one and two 
dimensions respectively, with the two dimensional QMC results of White er al [26] included 
too. We see that once again the SIC-UDA is generally better than the WA, except as 
[ / U  + 00, when the HFA becomes exact. However, the LSDA is plainly wrong for a l l  
values of t / U .  whereas Svane and Gunnarsson [13,14] appeared U, obtain more reaS0nabk 
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Hariree-Fock 
LS.D.A. 
S.1.C.-L.S.0.A 

--_ 
- 

3 -0.4 - 

0 Hirsch 
0 More0 et al. 

. 
0.0 5.0. 10.0 15.0 20.0 

un 

Figure 2. Plot of the 10tal energy per site divided by U, for the half-filled Hubbard model in 
two dimensions, <z(f /U),  against U/t, in IhL Haruee-Fock, LSD and sic-LSD approximations. 
The QMC results of Hinch I241 and Moreo ef a1 I251 on gnds of 8 x 8 and 12 x 12 sites 
respeclively. Quoted e m r  bus are included for the fomer. 

* 
Figure 3. Plot of the momentum disttibutian. n@), for the half-filled Hubbard model io one 
dimension. with I / U  = 0.1. in Ihe HF, LSD and SIC-LSD approximations. The d a d  line is the 
ema mull of Ta!aharhi (271. 
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-------------- 
/' ,- 

/ 
I 

1 .O 

0.8 

0.6 

- r 
0.4 

0.2 

1 
0.0 

, , ,  . - 
\ 
\ 
\ 

_ - - _  

Figure 4. Plot of the m m e n t m  distribution, n(k). for the half-filled Hubbard model in 
two dimensions. with l / U  = 0.1, along the M-r-X line. in the HF. I S D  and src-LSD 
approximations. The dotted line is Takahashi's result in the spin-wave approximation. 

0.8 

E- - 13 Hartree-Fock - S.1.C.-L.S.D.A. 
0.6 L- - L.S.D.A. 

I 

5 0.4 s 

0.2 

0.0 

-0.2 
0 1 2 3 4 5 6 7 6 9  

n 
Figure 5. Plot of w(n)  in one dimension for r / U  = 0.1. 

results. The explanation of this discrepancy is as follows; Svane and Gunnarsson appear to 
have used the result of the FIFA, LO = 3(1 -2(n,)(nL))/4, which, is incm'rect for the LSDA 
and SIC-LSDA. Thus, while in the LSDA the orbitals are the most delocalized. the energy 
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0.0 

\ .,_ \ 
\ ". m - P U Y U 

h - 
~~.~ ~ ~ 

0 1 2 3 4 ~5 - 6 -  7 
-0.2 ' 

n 

Figure 6. Plat of w(n) in two dimensions for l / U  = 0.1. 

0.8 E- - f3 Hartree-Fack 
A-- A L.S.D.A. - S.1.C:L.S.D.A. 

0.6 

- 
Z 0.4 3~ 

0.2 

0.0 

4.2 
0 1 2 3 4 5 6 7 8 9  

n 

Figure 7. Plot of U(%) in one dimemiions far r / U  = 1.0. 

functional used is an exceedingly poor approximation to the correlation energy. 
We have als.0 calculated the~sublattice magnetization m =- Int - nil, which is shown 

in figures 11 and 12. Note that for the SIC-LSDA in two dimensions, m remains finite as 
CP+ 0, which is a finite-size effect. Instead, m = (4u - 13/2u2 if the number of sites 
N.=~(4ujz, which arises because when U = O+, the summand of 12 is zero for all points 
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Figure 8. Plot of w(n) in two dimensions for t / U  = 1.0. 
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Figure 9. Plot of the local moment. La, in one dimension for the three approximations 
considered. along with the exact result from Lieb and Wu. 

in Kz, except for the points on the Fermi surface. where it equals 1. Thus, because I z  
is a sum. these points have a finite weight and so m is finite too, but it does tend to the 
correct limit. m = 0, as N -+ CO. Similarly, in one dimension, the summand of I ,  is also 
only non-zero, being equal to 1, on the Fermi surface, which is now just the two points 
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i 

S.1.C.-L.S.D.A. __ 
0 Hirsch 
A White et~al. 
o More0 et ai. 

I- ’ 
Figure 10. Plot of lhe local moment, LO. in two dimensions for the three approximations 
considered. along wilh the QMC results of Hinch [24]. White el 01 [261 and More0 et nl [23, 
on grids of 6 x 6.4 x 4 and 12 x 12 sites, respenively. 

k = hr. However. if we take N = Z(Zv + l), these points are not included in the k-sum 
and so we obtain the correct Limit with no finite-size problems, which is in conuast to the 
two-dimensional case where no such judicious choice of N exists. Finally, we compaml 
our results with those of Miyazaki et al [16], using N = 256 for the SIC-LSDA, and found 
that our results differed by no more than 0.001. ( The results published in [151 for n+ -nb 
are erroneous and have been corrected in [16].) 

Finally, before passing onto the conclusions we should l i e  to explain that the choice of a 
finite system in calculating the SIC-LSDA was prompted by the requirement of having to find 
the function g self-consistently, which can only be achieved numerically by so calculating 
the unknown function at a finite set of points. Thus, a finite system is quite attractive as 
not only do we have a finite set of points, but these points are not arbiuarily chosen, but 
are fixed by the choice of system size and boundary condition. However, a calculation for 
an infinite system is not ruled out, since any k-integral present will numerically be written 
as a sum and so we once again have g only over a finite set of points, but now a set that 
is somewhat more arbimy than before. We have hied just such a calculation, using the 
Cunningham points [28] for the square Fermi-zone for performing the k-integrals, which 
has the advantage of not including those points at which the integrand of 12 would have 
non-zero values for U = 0 and so ensuring the correct limit for m. Furthermore, we deal 
with the n sum in &(le) by summing it to convergence for each k-point. Unfonunately, 
this method was found to be numerically stable only for certain values of r / U ,  so we have 
not presented the results here. However, we mention this scheme to indicate that mating 
the infinite case is, at least in principle, possible. 
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Figure 11. Plot of the sublaltice magnetization, m, in me dimension, CdNlated in the three 
approrrimdons considered. 

un 
Figure 12. Plot of the sublattice magnetization, m. in two dimensions. calculated in t he  three 
approximations considered. 

4. Conclusions 

By conshucting a set of ansatz orbitals for the ground state of a d-dimensional Hubbard 
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model on a square lattice and at half-filling we have been able to obtain energy functionals 
of the momentum distribution in the HF, LSD and SIC-LSD approximations. We have 
calculated the energy in these approximations by minimizing with respect to the momentum 
distribution and have been able to obtain expressions for the limiting forms of the energy. 
All calculations have been at worst quadrature as our method avoids having to solve 
finitedifference equations. Our implementation also avoids the problem of non-orthogonal 
orbitals in the SIC-LSDA. Our results are in generally good agreemenl with those already 
published 113-161 and those obtained by other methods L2A.251. except where noted above. 

The HFA is reasonable across the whole range of t /U .  while the LSDA is always fairly 
poor. The addition of a SIC to the LSDA leads to a great improvement for all values of 
[/U, with the SIC-LSDA being the best approximation of the three when l / U  << 1. This 
improvement is most readily seen in the results for the local moment where, despite the 
LSDA calculation being so very poor. the SIC almost totally comcts it. We may therefore 
conclude that the SIC-LSDA is an improvement upon the LSDA in all the examples considered. 
What is more, even though the latter employed a somewhat arbiuary functional for the XC 
energy and could lead to results that were clearly in error, e.g. the energy as t /  U + 0, the 
SIC-LSDA corrected these errors almost totally. 

The method described in this paper assumes a system with one electron per site and 
just such a system is the low-density state of the elecnon liquid which we shall discuss 
elsewhere [291. 
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Appendix. Sub-lattice sums 

As we have a Nee1 state present we are naturally led to consider sums over the sublattices 
of terms like e""'. Let us assume that we have a d-dimensional cubic lanice, with lattice 
constant a. and apply periodic boundary conditions to a section containing N unit cells and 
of volume V ,  which we shall refer to as the fundamental domain (F'D). Now partition the 
sites between WO inteqeneuating sublattices, labelled + and -, and consider 

where the sum is over all the sites in the + sublattice, assumed to include the origin. S(k. z) 
is a periodic function of z, with the periodicity of the sublattice. if in the FD along any line 
of sites, parallel to a primitive lattice vector, there are as many + as - sites. Given this 
then N must be an even number. The periodicity of S permits us to write it as 

with 
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where & is a reciprocal sublattice vector and C is the volume of the sublattice unit cell, 
which is the region of integration, denoted by u?c. From (Al) and (A3) we obtain 

S M Manning and D M Edwards 

V 
SG(k) = T J ~ , ~ .  

11 

Since fi = 2u it follows that 

N 
S(k, x) = - 6 -eik'= 

2 - k,k 
k 

and therefore 

Since for all the - sites, n- = n+ a holds. if a = a(1, 0, . . . .O),.then from (Al) and (A6) 

follows. 
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